

Synthesis of PbTiO_3 film on LaNiO_3 -coated substrate by the spray-ICP technique

H. ICHINOSE, M. NAGANO

Department of Applied Chemistry, Saga University, 1, Honjou-machi, Saga-shi 840, Japan

H. KATSUKI, H. TAKAGI

Saga Ceramics Research Laboratory, 3100-5, Arita-machi, Nishimatsuura-gun, Saga 844, Japan

In an attempt to utilize LaNiO_3 as a bottom electrode for PbTiO_3 ferroelectric film, PbTiO_3 and LaNiO_3 films were prepared by the spray-ICP technique under atmospheric pressure. The dense LaNiO_3 films crystallized with preferred (111) and (100) orientations on sapphire (001) and MgO (100), respectively. Resistivities of the LaNiO_3 films deposited above 600 °C were about $4 \times 10^{-6} \Omega \text{m}$. The PbTiO_3 film with preferred (001) orientation was successfully prepared on LaNiO_3 -coated MgO (100). Its dielectric constant and dissipation factor were about 200 and 0.02, respectively, at 1 kHz. The Curie temperature suggested that PbTiO_3 films were free from contamination by LaNiO_3 .

1. Introduction

Thin PbTiO_3 films are well known as useful ferroelectrics [1, 2] and have received considerable attention for microelectronic applications. Thin PbTiO_3 films have been widely prepared by r.f. sputtering [3, 4], chemical vapour deposition [5, 6], laser ablation [7] and the sol-gel method [8]. The pyroelectric property of PbTiO_3 requires (001) orientation because of the polarization axis parallel to $\langle 001 \rangle$. Although noble metals such as platinum or palladium have been used as the electrodes for PbTiO_3 capacitors, there are some problems; expensiveness, weak adhesion to the substrate [4] and contamination by the interdiffusion from the substrates [9]. On the other hand, LaNiO_3 has a perovskite structure similar to PbTiO_3 and shows a metallic conductivity. LaNiO_3 film is, therefore, expected to be the favoured bottom electrode for PbTiO_3 dielectric film. The rhombohedral perovskite of LaNiO_3 has been favoured for electrodes [10], electrocatalysts and alcohol sensors [11, 12]. However, preparation of dense single-phase LaNiO_3 is difficult by a conventional sintering method, owing to the ease of decomposition to $\text{La}_2\text{NiO}_4 + \text{La}_2\text{O}_3 + \text{NiO}$ above 1120 °C [13]. Therefore, Na_2CO_3 flux as a sintering aid [14] or a precursor such as acetate [13] has been used in the preparation of LaNiO_3 , or high-pressure techniques such as hot pressing (HP) [15] or hot isostatic pressing (HIP) [16] have been employed.

The spray pyrolysis technique, assisted by an inductively coupled plasma (spray-ICP technique) has many advantages; it is free from contamination by the electrode, unstable phase formation or fast deposition rate due to the ultra-high temperature reaction, and easy composition control using aqueous source solu-

tions [17-21]. Oriented PbTiO_3 films were recently prepared on sapphire (001) and MgO (100) substrates by this method [22]. However, in order to utilize PbTiO_3 films in microelectronic fields, it is necessary to prepare (001)-oriented PbTiO_3 films on electrically conductive films for use as the bottom electrode. This study was focused on the preparation of a conductive LaNiO_3 film as a new bottom electrode by the spray-ICP technique and the formation of (001)-oriented PbTiO_3 films on the LaNiO_3 -coated substrates.

2. Experimental procedure

Mother solutions were prepared by dissolving $\text{La}(\text{NO}_3)_3 \cdot 6 \text{H}_2\text{O}$, $\text{Ni}(\text{NO}_3)_2 \cdot 6 \text{H}_2\text{O}$, $\text{Pb}(\text{NO}_3)_2$ or $\text{TiO}(\text{NO}_3)_2$ in distilled water in the required stoichiometric ratio ($\text{La:Ni or Pb:Ti} = 1:1$, total concentration of metal = 0.25 M). The spray-ICP technique employed here was similar to that originally reported by Kagawa *et al.* [20], and used previously to prepare oriented films of PbTiO_3 on various substrates [22]. The spray-ICP technique was described in detail in the previous paper [22]. Typical conditions of the spray-ICP technique in this study are shown in Table I. Sintered high-purity alumina, Si (100), sapphire (001) and MgO (100) plates (10-20 mm wide by 0.5 mm thick) were used as substrates. The substrate was heated to 350-800 °C by the ICP flame.

The films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray microprobe analysis (XMPA). The film compositions were determined by an ICP spectroscopic analysis after the films were dissolved in concentrated nitric acid. Electrical resistivities of LaNiO_3 films were

TABLE I Typical spray-ICP conditions for deposition

R.f. frequency	4 MHz
R.f. power	6–7 kW
Pressure	760 torr
Plasma gas (Ar)	15 SLM
Sheath gas (Ar)	10 SLM
(O ₂)	2 SLM
Carrier gas (Ar)	2 SLM
Position of substrate from centre of work coil	35 mm
Feed rate of mother solution	20 ml h ⁻¹

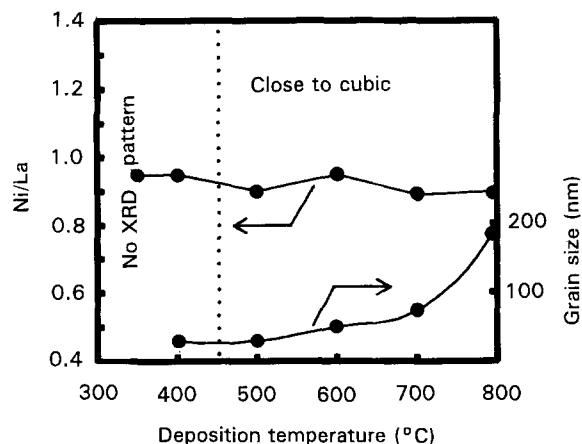


Figure 1 The effect of deposition temperature on composition and grain size of LaNiO₃ film deposited on sintered alumina.

measured by the standard four-probe technique using sputtered gold as the electrodes. Capacitors were formed by sandwiching a PbTiO₃ film between a bottom electrode (LaNiO₃ film) and a top electrode (sputtered gold). The dielectric properties were measured by using a LCZ meter (2330, NF Electronic Instruments).

3. Results and discussion

3.1. Properties of LaNiO₃ films

Fig. 1 shows the effect of substrate temperature on the composition and grain size of LaNiO₃ films deposited on sintered alumina substrates. The atomic ratios Ni/La of the films were 0.9–0.95 and equal to that of the mother solution. The splitting of (110) and (101) diffraction peaks was not so clear in XRD patterns of LaNiO₃ films obtained at 500–800 °C that the crystallographic structure of the films were presumed to be still rhombohedral (low-temperature phase), but it was close to the cubic form (high-temperature phase) [13]. Obayashi and Kudo [13] reported that the rhombohedral–cubic transition was observed at 940 °C. The reasons why the structure of LaNiO₃ film was close to the high-temperature phase, in spite of a lower deposition temperature than the transition temperature, may be as follows: (1) the very small grain size of LaNiO₃ (< 100 nm) caused the appearance of the high-temperature phase, as shown in the case of PbTiO₃ [23]; (2) the highly activated species in the high-temperature ICP formed the high-temperature phase of LaNiO₃ which was quenched.

Fig. 2 shows the electrical resistivity of LaNiO₃ films deposited on an alumina substrate. The electrical resistivity decreased with increasing deposition temperature, and low resistivities of about 4 × 10⁻⁶ Ω m were obtained for the films deposited above 600 °C. Because the reported electrical conductivity of dense LaNiO₃ prepared by HIP at 1400 °C was 2.2 × 10⁻⁶ Ω m [16], LaNiO₃ films obtained above 600 °C in this study were deduced to be fairly dense.

Fig. 3 shows XRD patterns of films deposited at 800 °C on the substrates of sintered alumina, Si (100), sapphire (001) and MgO (100). The LaNiO₃ films crystallized with preferred (110), (101), (111) and (100) orientations on sintered alumina, Si (100), sapphire (001) and MgO (100), respectively. In particular, the LaNiO₃ film on MgO (100) oriented preferentially: it was found on the various substrates of single crystal as well as on the polycrystalline substrate of sintered alumina that LaNiO₃ films crystallized in a form close to the high-temperature phase (cubic). SEM images of LaNiO₃ films deposited on sintered alumina, Si (100), sapphire (001) and MgO (100) at 800 °C are compared in Fig. 4. The microstructures of these films depended significantly on the substrates. The films on sintered alumina and Si (100) were composed of particles 0.1–0.2 μm in size. On sapphire, a smooth surface consisted of particles with triangular planes parallel to the substrate, suggesting the (111) orientation of the particles. The film on MgO was also very smooth and dense. Several rod-like particles were observed on the surface. The textures of the smooth surfaces and the arrangements of the particles on sapphire and MgO suggested an epitaxial growth. Confirmation was left for future experiments.

3.2. PbTiO₃ films deposited on the LaNiO₃ films

In order to use LaNiO₃ as a bottom electrode for

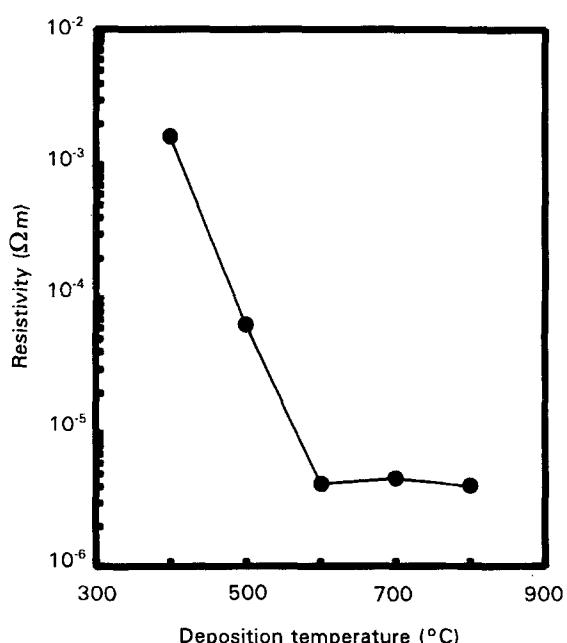


Figure 2 The effect of deposition temperature on resistivity of LaNiO₃ film deposited on sintered alumina.

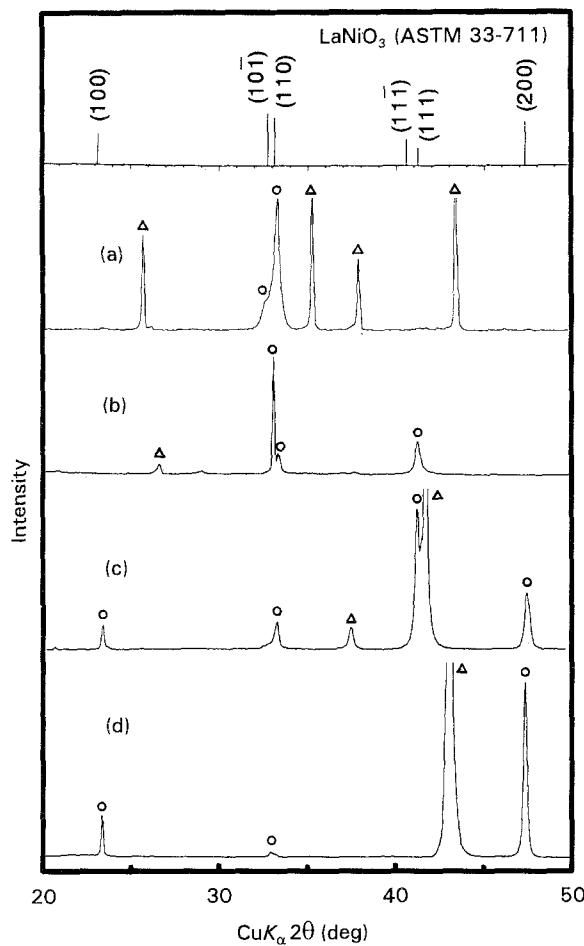


Figure 3 XRD patterns of LaNiO_3 films deposited at 800°C on (a) sintered alumina, (b) Si (100), (c) sapphire (001) and (d) MgO (100). (○) LaNiO_3 , (△) substrate.

PbTiO_3 dielectric film, PbTiO_3 films were formed on LaNiO_3 -coated substrates. Fig. 5 shows XRD patterns of PbTiO_3 films deposited on LaNiO_3 -coated various substrates. The substrate temperatures were kept at 800 and 650°C during deposition of LaNiO_3 and PbTiO_3 , respectively. The film of PbTiO_3 deposited on sintered alumina coated with LaNiO_3 was not oriented. The PbTiO_3 films on silicon, sapphire and MgO crystallized preferentially with (111), (111) and (001) orientations. The degree of c-axis orientation, $\alpha = \Sigma I(001)/\Sigma I(hkl)$, of the film deposited on MgO was $0.8\text{--}0.9$, where $I(001)$ and $I(hkl)$ are the XRD intensities of (001) and (hkl) reflections. This value was equivalent to that obtained by a sputtering method [24]. It should be noted that (111) orientation appeared on LaNiO_3 -coated silicon substrate, whereas orientation of the film was not observed on

silicon without an LaNiO_3 -coating [22]. The preferred orientation on LaNiO_3 -coated silicon may be attributed to the oriented LaNiO_3 film which has a similar perovskite-type structure to PbTiO_3 .

Fig. 6 shows SEM images of cross-sections of these films. PbTiO_3 particles on LaNiO_3 -coated sapphire and silicon were columnar. Their coagulation was not so tight. On the other hand, films on LaNiO_3 -coated sintered alumina and especially on LaNiO_3 -coated MgO , were densely coagulated. It should be noted that the film on LaNiO_3 -coated MgO had a smoother surface than that deposited directly onto MgO without an LaNiO_3 -coating [22]. The PbTiO_3 particles on this smooth film had a square plane, and the edges were parallel to the $\langle 001 \rangle$ direction of the MgO substrate, as shown in Fig. 7. An epitaxial growth of PbTiO_3 on LaNiO_3 -coated MgO is suggested.

3.3. Dielectric properties

When the LaNiO_3 film is utilized as a bottom electrode for PbTiO_3 ferroelectric film, there is the risk of contamination by diffusion of LaNiO_3 to the PbTiO_3 layer during deposition. The contamination with lanthanum in the PbTiO_3 film may cause the formation of $\text{Pb}_{1-x}\text{La}_{2x/3}\text{TiO}_2$ and result in a lowering of the Curie temperature. In order to confirm this point, the temperature dependence of dielectric constants, (ϵ_r), was investigated for the dense PbTiO_3 films obtained on LaNiO_3 -coated MgO and sintered alumina (thickness about $0.5\text{ }\mu\text{m}$). The results are shown in Fig. 8. The maximum dielectric constant due to the ferroelectric-paraelectric phase transition was clearly observed at about 490°C for both films, and the relationship between ϵ_r and T followed the Curie-Weiss law above 490°C . This transition temperature agreed closely with that of pure PbTiO_3 ceramics. This result suggested that the contamination with LaNiO_3 in the PbTiO_3 layer was negligible, and that the LaNiO_3 interlayer was a good bottom electrode for PbTiO_3 dielectric film.

Table II shows the ϵ_r and the dissipation factor, $\tan \delta$, measured at 1 kHz and at room temperature. ϵ_r of PbTiO_3 films deposited at 650°C on LaNiO_3 -coated MgO and sintered alumina were 197 and 125 , respectively, for a film thickness of about $0.6\text{ }\mu\text{m}$. This difference was deduced to be attributed to the difference in the densities of films. ϵ_r decreased for the films deposited on LaNiO_3 -coated MgO at 600 and 700°C . The lower ϵ_r might be attributed to the thinness of the film (about $0.4\text{ }\mu\text{m}$) [3]. $\tan \delta$ had the relatively small value of $0.017\text{--}0.08$.

TABLE II ϵ_r and $\tan \delta$ of PbTiO_3 film measured at 1 kHz

Sample	Substrate	Deposition temp. ($^\circ\text{C}$)	Thickness (μm)	ϵ_r	$\tan \delta$
1	$\text{LaNiO}_3/\text{Al}_2\text{O}_3$	650	0.6	125	0.08
2	$\text{LaNiO}_3/\text{MgO}(100)$	600	0.44	101	0.03
3	$\text{LaNiO}_3/\text{MgO}(100)$	650	0.63	197	0.08
4	$\text{LaNiO}_3/\text{MgO}(100)$	700	0.43	144	0.017

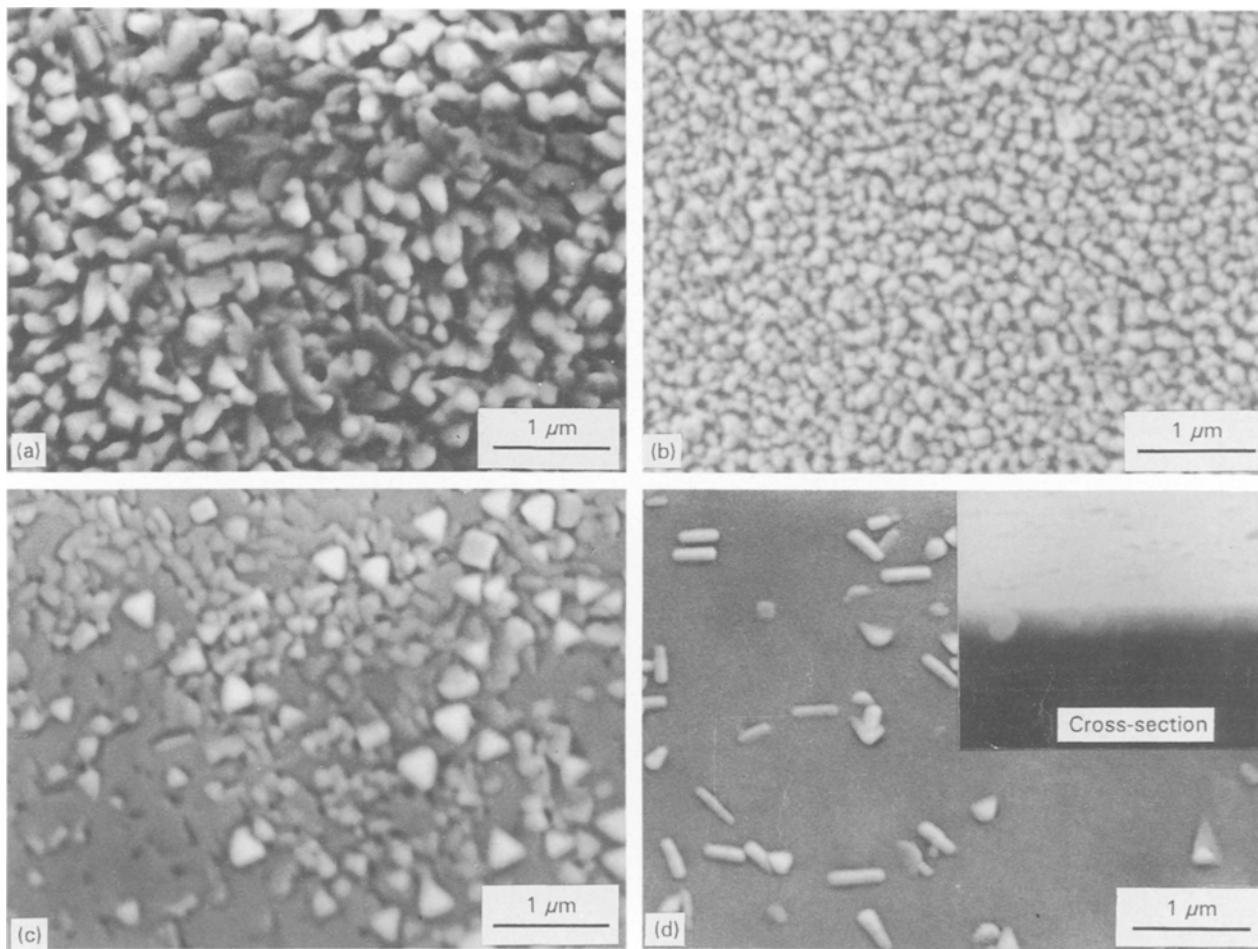


Figure 4 SEM images of LaNiO_3 films deposited at 800°C on (a) sintered alumina, (b) Si (100), (c) sapphire (001) and (d) MgO (100). The insert in (d) is a surface observed from the film edge.

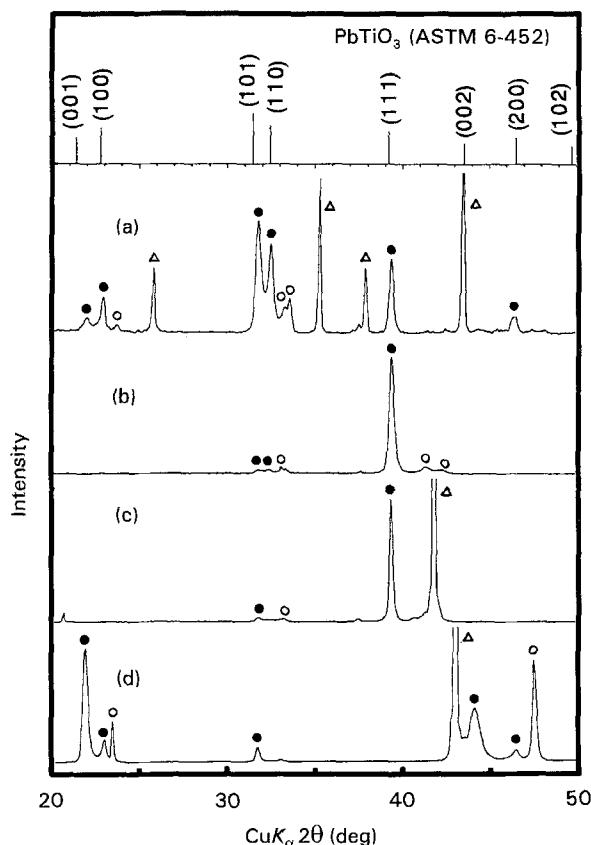


Figure 5 XRD patterns of PbTiO_3 films deposited at 650°C on LaNiO_3 -coated substrates: (a) sintered alumina, (b) Si (100), (c) sapphire (001) and (d) MgO (100). (○) LaNiO_3 , (●) PbTiO_3 , (△) substrate.

4. Conclusion

In order to utilize LaNiO_3 as a bottom electrode for PbTiO_3 ferroelectric film, PbTiO_3 was deposited on LaNiO_3 -coated substrate by the spray-ICP technique. Single phases of perovskite-type LaNiO_3 and PbTiO_3 were obtained at 500 – 800°C . Most of the films had relatively dense structures. In particular, PbTiO_3 obtained on LaNiO_3 -coated MgO (100) was denser than that deposited directly on MgO (100). Because this film crystallized with the (001) orientation perpendicular to the polarization axis, the dielectric constant was relatively high (about 200 at 1 kHz). It should be noted that excellent films could be obtained by the spray-ICP process, as quickly by the MOCVD method, but which requires a reduced atmosphere and expensive source materials. These preferentially oriented films were attributed to the successful preparation of dense, oriented LaNiO_3 film, which had the same type of crystal structure as PbTiO_3 and a high electrical conductivity. In addition, the contamination of PbTiO_3 films from the LaNiO_3 layer was found to be negligible. It was, therefore, believed that the LaNiO_3 film was a more favourable electrode for PbTiO_3 dielectric film than the conventional platinum electrode. Other lanthanum series perovskites could also be expected to be used as electrodes for dielectric films.

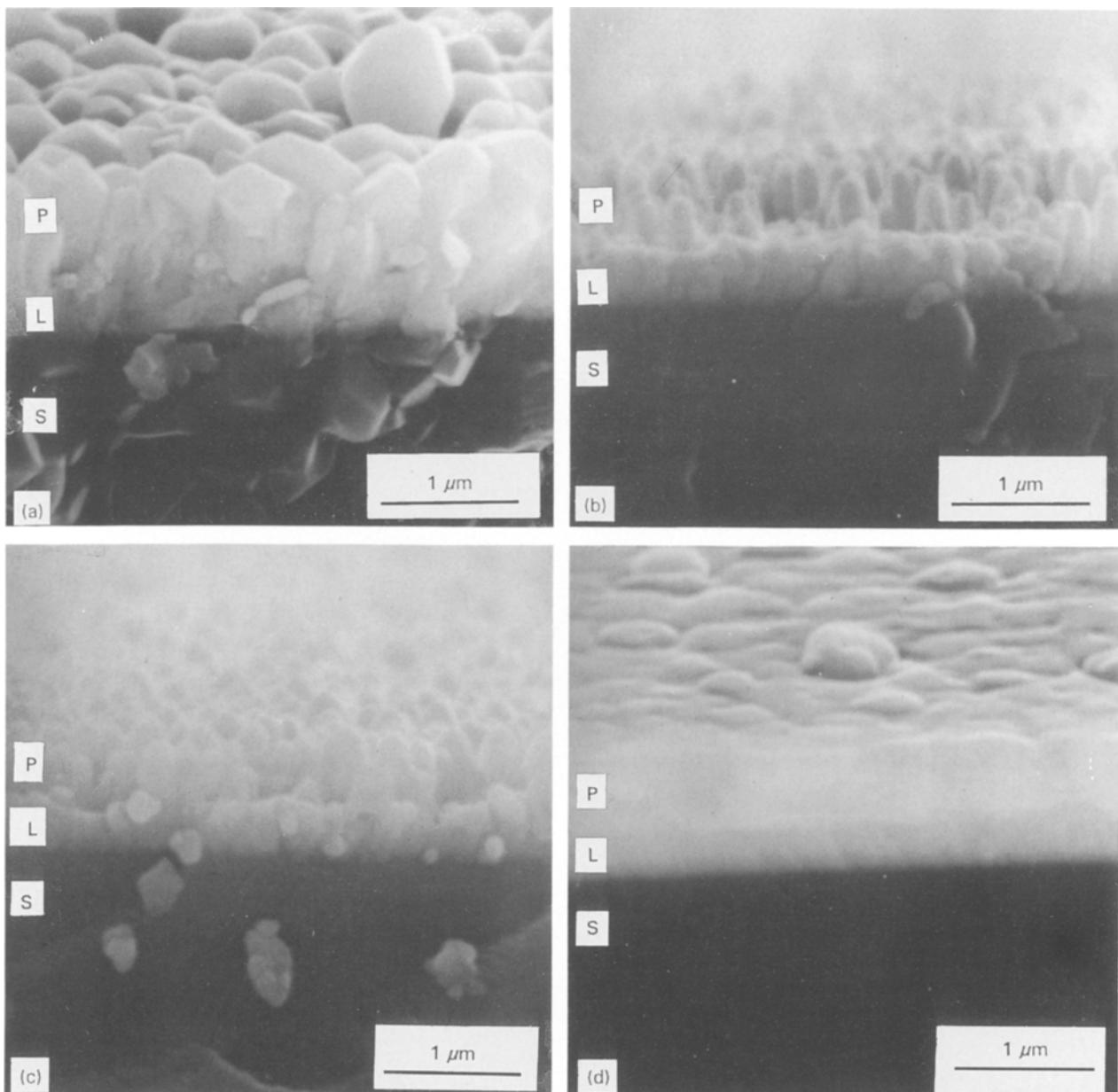


Figure 6 Cross-sections of $\text{PbTiO}_3/\text{LaNiO}_3$ films deposited on (a) sintered alumina, (b) Si (100), (c) sapphire (001) and (d) MgO (100). P, L and S refer to layer of PbTiO_3 , LaNiO_3 and substrate, respectively.

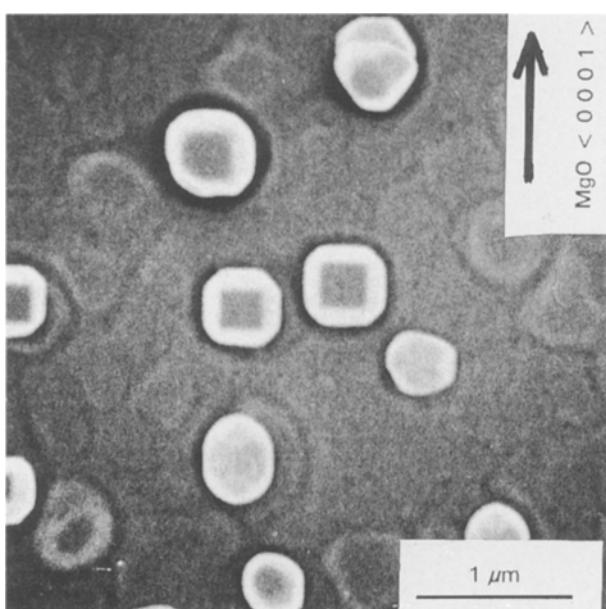


Figure 7 PbTiO_3 particles deposited on PbTiO_3 film which was prepared on LaNiO_3 -coated MgO (100).

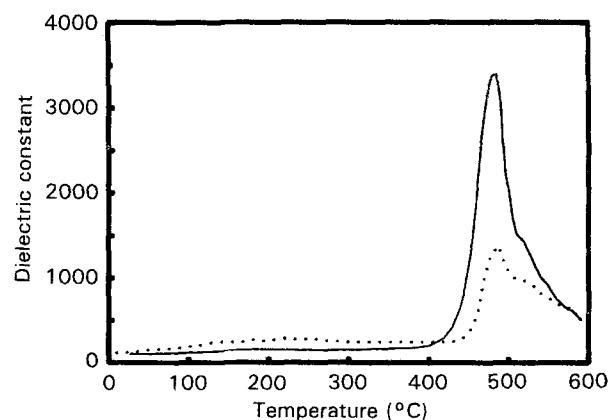


Figure 8 Temperature dependence of dielectric constant of PbTiO_3 film deposited on LaNiO_3 -coated substrate (at 1 kHz). (—) $\text{PbTiO}_3/\text{LaNiO}_3/\text{MgO}$, 600°C; (··) $\text{PbTiO}_3/\text{LaNiO}_3/\text{Al}_2\text{O}_3$, 650°C.

Acknowledgements

The authors thank Dr M. Kagawa, Institute for Materials Research, Tohoku University, for useful suggestions.

References

1. G. SHIRANE, R. PEPINSKY and B. C. FRAZER, *Acta Crystallogr.* **9** (1956) 131.
2. V. G. BHIDE, M. S. HEGDE and K. G. DESHMUKH, *J. Am. Ceram. Soc.* **51** (1968) 565.
3. M. OKUYAMA, Y. MATSUI, H. NAKANO, T. NAKAGAWA and Y. HAMAKAWA, *Jpn J. Appl. Phys.* **18** (1979) 1633.
4. K. ABE, H. TOMITA, H. TOYOTA, M. IMAI and Y. YOKOTE, *ibid.* **30** (1991) 2152-54.
5. T. NAKAGAWA, J. KAWAGUCHI, M. OKUYAMA and Y. HAMAKAWA, *ibid.* **21** (1982) L655.
6. A. ANDO, T. KATAYAMA, M. SHIMIZU and T. SHIOSAKI, *ibid.* **31** (1992) 3001.
7. H. TABATA, O. MURATA, T. KAWAI, S. KAWAI and M. OKUYAMA, *ibid.* **31** (1992) 2968.
8. S. L. SWARTZ, S. J. BRIGHT, P. J. MELLING and T. R. SHROUT, *Ferroelectrics* **108** (1990) 71.
9. S. MATSUBARA, T. SAKUMA, S. YAMAMICHI, H. YAMAGUCHI and Y. MIYASAKA, *Mater. Res. Soc. Symp. Proc.* **200** (1990) 243.
10. Y. MATSUMOTO, H. YONEYAMA and H. TAMURA, *Chem. Lett.* (1975) 661.
11. Y. MATSUMOTO, S. YAMADA, T. NISHIDA and E. SATO, *J. Electrochem. Soc.* **127** (1980) 2360.
12. H. OBAYASHI, Y. SAKURAI and T. GETO, *J. Solid State Chem.* **17** (1976) 299.
13. H. OBAYASHI and T. KUDO, *Jpn J. Appl. Phys.* **14** (1975) 330.
14. A. WOLD, B. POST and E. BANKS, *J. Am. Chem. Soc.* **79** (1957) 4911.
15. M. C. KIM, S. J. PARK, H. HANEDA, A. WATANABE, J. TANAKA and S. SHIRASAKI, *Jpn J. Ceram. Soc.* **97** (1989) 1129.
16. K. KAMATA, S. OHSHIO, K. TAKA, K. KAWAI, T. YMADA and J. NISHINO, *Jpn J. Ceram. Soc.* **100** (1992) 972 (in Japanese).
17. M. KAGAWA, M. KIKUCHI, R. OHNO and T. NAGAE, *J. Am. Ceram. Soc.* **64** (1981) C7.
18. M. KAGAWA, M. KIKUCHI, Y. SYONO and T. NAGAE, *ibid.* **66** (1983) 751.
19. T. ONO, M. KAGAWA and Y. SHONO, *J. Mater. Sci.* **20** (1985) 2483.
20. M. KAGAWA, H. KOMATSU, Y. SYONO and A. YAMADA, *Adv. Ceram.* **24** (1988) 951.
21. M. SUZUKI, M. KAGAWA, Y. SYONO and T. HIRAI, *J. Crystal Growth* **99** (1990) 611.
22. H. ICHINOSE, H. KATSUKI, H. TAKAGI and M. NAGANO, *J. Mater. Sci.* **29** (1994).
23. K. UCHINO, E. SADANAGA and T. HIROSE, *J. Am. Ceram. Soc.* **72** (1989) 1555.
24. K. IIJIMA, Y. TOMITA, R. TAKAYAMA and I. UEDA, *J. Appl. Phys.* **60** (1986) 361.

Received 11 June 1993
and accepted 19 January 1994